Dual convex polytopes in Banach spaces
نویسندگان
چکیده
منابع مشابه
Convex Games in Banach Spaces
We study the regret of an online learner playing a multi-round game in a Banach space B against an adversary that plays a convex function at each round. We characterize the minimax regret when the adversary plays linear functions in terms of the Rademacher type of the dual of B. The cases when the adversary plays bounded and uniformly convex functions respectively are also considered. Our resul...
متن کاملConvex Optimization on Banach Spaces
Greedy algorithms which use only function evaluations are applied to convex optimization in a general Banach space X . Along with algorithms that use exact evaluations, algorithms with approximate evaluations are treated. A priori upper bounds for the convergence rate of the proposed algorithms are given. These bounds depend on the smoothness of the objective function and the sparsity or compre...
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملDual renormings of Banach spaces
We prove that a Banach space admitting an equivalent WUR norm is an Asplund space. Some related dual renormings are also presented. It is a well-known result that a Banach space whose dual norm is Fréchet differentiable is reflexive. Also if the the third dual norm is Gâteaux differentiable the space is reflexive. For these results see e.g. [2], p.33. Similarly, by the result of [9], if the sec...
متن کاملThe Geometry of Convex Transitive Banach Spaces
Throughout this paper, X will denote a Banach space, S ̄S(X ) and B ̄B(X ) will be the unit sphere and the closed unit ball of X, respectively, and ' ̄'(X ) will stand for the group of all surjective linear isometries on X. Unless explicitly stated otherwise, all Banach spaces will be assumed to be real. Nevertheless, by passing to real structures, the results remain true for complex spaces. Recal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1967
ISSN: 0022-247X
DOI: 10.1016/0022-247x(67)90121-7